The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype.

نویسندگان

  • Ryan H Cunnington
  • Josette M Northcott
  • Saeid Ghavami
  • Krista L Filomeno
  • Fahmida Jahan
  • Morvarid S Kavosh
  • Jared J L Davies
  • Jeffrey T Wigle
  • Ian M C Dixon
چکیده

Cardiac fibrosis is linked to fibroblast-to-myofibroblast phenoconversion and proliferation but the mechanisms underlying this are poorly understood. Ski is a negative regulator of TGF-β-Smad signaling in myofibroblasts, and might redirect the myofibroblast phenotype back to fibroblasts. Meox2 could alter TGF-β-mediated cellular processes and is repressed by Zeb2. Here, we investigated whether Ski diminishes the myofibroblast phenotype by de-repressing Meox2 expression and function through repression of Zeb2 expression. We show that expression of Meox1 and Meox2 mRNA and Meox2 protein is reduced during phenoconversion of fibroblasts to myofibroblasts. Overexpression of Meox2 shifts the myofibroblasts into fibroblasts, whereas the Meox2 DNA-binding mutant has no effect on myofibroblast phenotype. Overexpression of Ski partially restores Meox2 mRNA expression levels to those in cardiac fibroblasts. Expression of Zeb2 increased during phenoconversion and Ski overexpression reduces Zeb2 expression in first-passage myofibroblasts. Furthermore, expression of Meox2 is decreased in scar following myocardial infarction, whereas Zeb2 protein expression increases in the infarct scar. Thus Ski modulates the cardiac myofibroblast phenotype and function through suppression of Zeb2 by upregulating the expression of Meox2. This cascade might regulate cardiac myofibroblast phenotype and presents therapeutic options for treatment of cardiac fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility.

Cardiac myofibroblasts are key players in chronic remodeling of the cardiac extracellular matrix, which is mediated in part by elevated transforming growth factor-β₁ (TGF-β₁). The c-Ski proto-oncoprotein has been shown to modify TGF-β₁ post-receptor signaling through receptor-activated Smads (R-Smads); however, little is known about how c-Ski regulates fibroblast phenotype and function. We soug...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

TGFβ1 regulates Scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism.

In cardiac wound healing following myocardial infarction (MI), relatively inactive resident cardiac fibroblasts phenoconvert to hypersynthetic/secretory myofibroblasts that produce large quantities of extracellular matrix (ECM) and fibrillar collagen proteins. Our laboratory and others have identified TGFβ1 as being a persistent stimulus in the chronic and inappropriate wound healing phase that...

متن کامل

I-28: Role of Mevalonate-Ras Homology (Rho)/Rho-Associated Coiled-Coil-Forming Protein Ki nase-Mediated Signaling Pathway in The Pathogenesis of Endometriosis-Associated Fibrosis

Background: Endometriosis, a disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial glands and stroma surrounded by dense fibrous tissue. Whereas, normal eutopic endometrium shows scarless tissue repair during menstrual cycles, which suggests that the endometriotic tissues have distinct mechanisms of fibrogenesis. During the development of en...

متن کامل

Prediction of MicroRNAs bind to Toll-like Receptors Pathway in Chicken based on Bioinformatics Method

Background: Toll-like receptors (TLRs) detect diverse pathogen-associated molecular patterns and play a critical role in the innate immune response. Hosts should activate TLR-signaling pathways to eliminate invading pathogens. However, excessive activation of these pathways may interrupt immune homeostasis, leading to several diseases. Therefore precise regulation of TLR-signaling pathways is e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2014